Lecture 20 - Nov 18

Bridge Controller

Invariant vs. Variant
Observing Patterns of Variant Values
POs of Variants: NAT vs. VAR

Announcements/Reminders

- Today's class: notes template posted
- Lab4 released
- A reference paper for the tabular method (Lab4)
- Online course evaluation

Invariant Us. Variant Invaviant: Boolean expression that should

ystem)

always hold (after init and all event
occurrences) 4Lost ZLM --EN 7/0 Variant: Integer expression that may thange after event occurrences.

Use of a Variant to Measure New Events Converging

fixed

variables: a, b, c

invariants:

inv1_1 : $a \in \mathbb{N}$ inv1_2 : $b \in \mathbb{N}$

inv1 3 : $c \in \mathbb{N}$

inv1 4: a + b + c = n

inv1_**5**: $a = 0 \lor c = 0$

ML_out **when** a + b < d c = 0**then**

tnen $a := \underline{a+1}$ end

<init, ML_out, ML_out, IL_in, IL_in, IL_out, IL_out, ML_in, ML_in >

ML_in **when** *c* > 0 **then**

 $c := \underline{c-1}$ end

When a > 0

a:=<u>a-1</u>

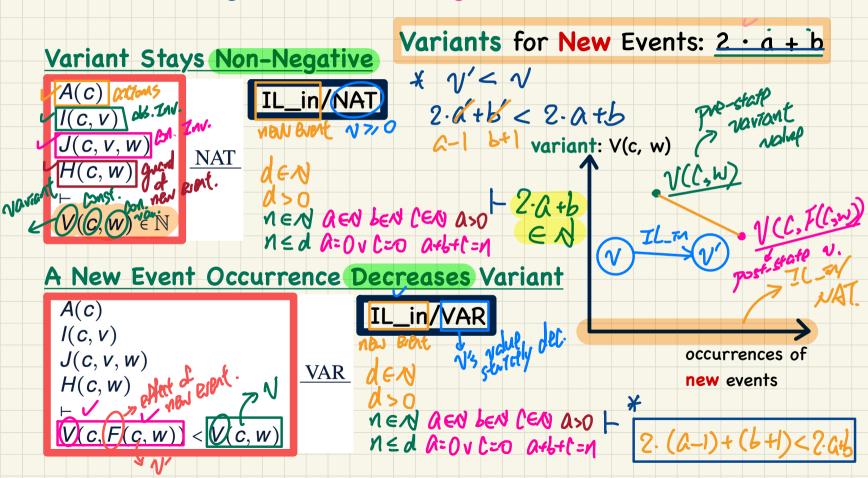
 $b := \overline{b+1}$ end

variant: 2 ·

end

Variants for New Events: 2 · a + b

a = 0 a = 7 a = 2 $a = 1 \cdot a = 0 \cdot a = 0$ a = 0 a = 0


b = 0 b = 0 b = 1 b = 2 - b = 1 b = 0 b = 0 b = 0 c = 0 c = 0 c = 0 c = 0 c = 1 c = 2 c = 1 c = 0

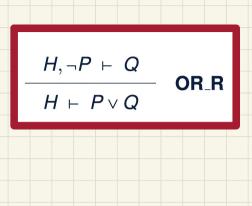
v = 0 v = 0 v = 0 v = 0 v = 0 v = 0 v = 0 v = 0 v = 0

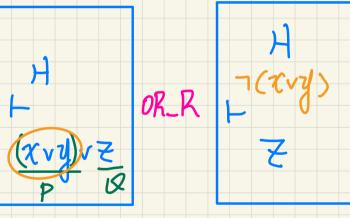
|L_out | when | b > 0 | a = 0 | then | b := b - 1 | c := c + 1

occurrences of concrete events

PO of Convergence/Non-Divergence/Livelock Freedom

Exercise Given variant: a + b (1) Trace the value of V using the same trace. Can the same patterns be observed? (2) Formulate the NAR and NAT POs.


(2) * Z seguents & pane)


ILM, ILLOUT NAT. VAR. 3) Are they provade?

Example Inference Rules (HATP > Q) (H => PVQ)

$$H \mapsto P \vee Q$$

$$H \mapsto P \wedge Q$$

